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Summary. The first part of the present communication develops the general theory of the partial optic

axis, which is an excitation specific structural feature first proposed as an aid to the choice of

chromophoric reference points in a molecular exciton approach to optical rotatory power, and discusses

its applicability to symmetry analyses in the light of the distinction between the three categories for

anisotropic optical rotatory power, i.e. chiral, achiral optically active, and achiral optically inactive

molecular structures. The second part of the communication discusses the special role played by the

concept of the partial optic axis in the evaluation of the anisotropic chromophoric intensity contribu-

tions in a molecular exciton approach, in particular in relation to the use of the chromophoric

symmetry for the systematic selection and characterization of the intensity contributions.

Keywords. Molecular exciton theory; Exciton chirality; Partial optic axis; Anisotropic circular

dichroism; Point group symmetry.

Introduction

Anisotropic and isotropic molecular optical rotatory power differ in the multipolar
nature of the theoretical intensity expressions for the two phenomena, and in their
structural requirements. For anisotropic chiroptical intensities, electric dipole –
magnetic dipole and electric dipole – electric quadrupole contributions enter on
an equal footing in the intensity expressions, see Refs. [1–4] and references
therein. In addition, an analysis of the requirements for anisotropic optical rotatory
power leads to a classification in three categories: chiral, achiral optically active,
and achiral optically inactive structures [4, 5]. In contrast, it is of course well
established that only electric dipole – magnetic dipole terms contribute under
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isotropic conditions [6], and that the categories chiral and achiral suffice for struc-
tural classifications. This difference provides the language of point group symme-
try [7, 8] with a more prominent role in the discussion of the anisotropic properties.
In symmetry terms, chiral molecular structures belong to the pure rotation groups
Cn, Dn, T, and O, and achiral optically active molecular structures belong to the
point group D2d or to one of its achiral subgroups, i.e. Cs¼Ch, C2v, and S4 [4, 5, 7],
the remaining point groups accounting for the achiral optically inactive structures.

The threefold structural classification is important for the treatment of the chro-
mophoric contributions in an exciton approach to anisotropic molecular chiroptical
properties [5], and is coupled to seemingly rather technical problems relating to the
translational properties of the theoretical intensity expressions and to the choice of
appropriate locations for the chromophoric reference points required for evaluation
or estimate of the exciton intensities. The importance of the latter two problems was
first pointed out by Moffitt [9] in his pioneering work on the application of a
molecular exciton approach to polymer chiroptical properties. As a remedy, Moffitt
suggested the application of a construct called a partial optic axis as a basis for the
choice of chromophoric reference points, and provided a brief discussion of the
symmetry aspects in the context of isotropic optical rotatory power. In the following
section, we develop the theory of the partial optic axis in more detail for anisotropic
chiroptical properties in general, and discuss its application to a molecular symme-
try based analysis of the multipolar anisotropic intensity contributions. In the sub-
sequent section, we summarize the molecular exciton expressions for anisotropic
chiroptical intensities presented in Ref. [5], and discuss the special role played by
the concept of the partial optic axis in the evaluation of the anisotropic chromo-
phoric intensity contributions, in particular in relation to the use of the chromo-
phoric symmetry for the systematic selection and characterization of the intensity
contributions. The final section contains concluding summary and remarks.

The Partial Optic Axis

Chiroptical Intensity Quantities

We shall be concerned with the following intensity quantities, the dipole strength
tensor (Eq. (1)) governing the anisotropic ordinary absorption intensity of excita-
tion q o, and the rotatory strength tensor (Eq. (2)) governing the anisotropic
circular dichroism of this excitation in the socalled small molecule limit [4, 5].
The molecular wavefunctions are assumed purely real throughout. rj and p

j
are the

position and momentum vectors for electron j, and the electric dipole transition
moment for the excitation q o is given by Eq. (3) where !q¼ (Eq�Eo)=�h is the
angular resonance frequency. See the appendix in Ref. [5] for the vector and tensor
notation used in Eqs. (1) and (2).

Dq ¼ ð3=2Þ½hoj�
e
jqi?hqj�

e
joiI� hoj�

e
jqi :hqj�

e
joi� ð1Þ

Rq ¼
3e2

4m2!q

��
o

����
X
j

rj :p
j

����q
�
3

�
q

����
X
j

p
j

����o
�
�
�

o

����
X
j

p
j

����q
�
3

�
q

����
X
j

p
j
: rj

����o
��

ð2Þ

276 A. E. Hansen



hqj�
e
joi ¼ �e

�
q

����
X
j

rj

����o
�
¼ ie

�
q

����
X
j

p
j

����o
�
=m!q ð3Þ

Alternatively, the rotatory strength tensor can be separated into multipolar com-
ponents [4, 5] (Eq. (4)) where the electric dipole – magnetic dipole contribution is
given by Eq. (5) and the electric dipole – electric quadrupole contribution is shown
in Eq. (6).
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The magnetic dipole and electric quadrupole transitions moments are given by
Eqs. (7) and (8).
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The tensor in Eq. (1) is symmetric in the Cartesian indices as written, and Eqs. (2),
(5), and (6) retain the Cartesian symmetrization as derived in Ref. [4]; cf. Eq. (13)
of Ref. [5]. The isotropic absorption and CD intensities are governed by the dipole
strength (Eq. (9)) and the rotatory strength (Eq. (10)), the tensor R(Q)q, Eq. (6),
being traceless.

Dq ¼ ð1=3ÞtrfDqg ¼ jhoj�e
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Translational Properties

The essential feature behind the introduction of a partial optic axis is the behaviour
of the multipolar electronic transition moments, and hence the chiroptical intensity
expressions, with respect to translation of the molecular coordinate origin. Under
translation of the origin along a vector a relative to the molecular frame, the po-
sition and momentum vectors for electron j transform as rj ! rj � a and p

j
! p

j
.

For the electric dipole transition moment, Eq. (3), the translation leaves the mo-
mentum version, hoj

P
j p

j
jqi, strictly invariant, while orthogonality of the states o

and q ensures invariance of the length version of the electric dipole transition moment
(Eq. (11)), i.e.
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For the magnetic dipole and electric quadrupole transitions moments, Eqs. (7)
and (8), translation implies the transformations shown by Eqs. (12) and (13) where
Eq. (12) assumes orthogonality of the states o and q, and Eq. (13) assumes Eq. (3)
for the introduction of the length version of the electric dipole transition moment.
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The dipole strength tensor and its isotropic component, Eqs. (1) and (9), are
trivially invariant to origin translation, and for the rotatory strength tensor, Eq. (2),
we find Eq. (14), ensuring the translational invariance of the rotatory strength
tensor, since the cross product hoj

P
j p

j
jq3hqj

P
j p

j
joi vanishes for real wavefunc-

tions. Equation (14) implies the corresponding invariance relation for the rotatory
strength, Eq. (10) as given by Eq. (15).
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RðaÞq ¼ ð1=3ÞtrfRðaÞqg ¼ ð1=3ÞtrfRqg ¼ Rq ð15Þ
The rotatory strength tensor and its isotropic component are therefore invariant to
origin displacements [1–3, 10], whereas the translational properties of the mag-
netic dipole and electric quadrupole transitions moments, Eqs. (12) and (13), imply
that the tensors R(M)q and R(Q)q, Eqs. (5) and (6), in general change by numeri-
cally equal but oppositely signed amounts [2, 3]. Hence computed results for the
elements of these two tensors will depend on the choice of molecular reference
coordinate system, regardless of computational approach. See Refs. [2, 23] for a
discussion of the experimental perspective on the separation of the rotatory tensor
into multipolar components, and see Refs. [3, 4] for discussions of the computa-
tional problems relating to translational invariance.

The Partial Optic Axis

Equation (13) allows the determination of a set of excitation specific reference loca-
tions faqg for an electric dipole allowed excitation q o such that the magnetic dipole

278 A. E. Hansen



transition moment vanishes identically or is strictly parallel to the electric dipole tran-
sition moment for this excitation as shown by Eq. (16), where �q (Eq. (17)) is a real
quantity or zero. The general solution of Eq. (16) is given by Eq. (18) parametrized in
terms of the real quantity �. The line given by Eq. (18) is the partial optic axis as
defined by Moffitt [9]. We shall use aq to denote a specific reference point on the axis.
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From Eqs. (16) and (17) the resulting magnetic dipole transition moment re-
ferred to a point on the corresponding partial optic axis is given by Eq. (19) allow-
ing the electric dipole – magnetic dipole rotatory strength tensor referred to a point
on the partial optic axis to be expressed by Eq. (20) from Eqs. (1), (5), and (19). The
electric dipole – magnetic dipole rotatory strength tensor referred to a point on the
partial optic axis is accordingly proportional to the dipole strength tensor Dq,
Eq. (1), the proportionality factor being the ratio of the rotatory strength Rq, Eq. (10),
and the dipole strength Dq, Eq. (9). Relative to a point on the partial optic axis,
the electric dipole – electric quadrupole rotatory strength tensor is expressed by
Eq. (21), cf. Eq. (6). An alternative expression for R(Q, aq)q can be obtained by
utilizing that the total rotatory strength tensor is invariant under translation, cf.
Eq. (14), and Eqs. (20) and (22) then provide Eq. (23) for the electric dipole –
electric quadrupole tensor referred to the partial optic axis.
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Equations (20) and (23) suggest the determination of electric dipole – magnetic
dipole and electric dipole – electric quadrupole rotatory strength tensors referred to
a point on the partial optic axis from the (at least in principle) observable quantities
Rq and Dq, and can hence be viewed as a basis for a physically meaningful multi-
polar interpretation of ACD, in contrast to the in general arbitrary decomposition
expressed by Eqs. (4)–(6).

Discussion of Symmetry Aspects

For molecular systems devoid of symmetry, i.e. point group symmetry C1 [8],
the determination of a reference point on the partial optic axis for a particular
excitation requires solution of Eq. (18) and a judicious choice of the parameter
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�, while symmetry may assist the determination of the partial optic axis for an
excitation in a system with one or more symmetry elements. For centrosymmetric
molecular systems, defined as systems for which all symmetry elements intersect in
a single point, Moffitt [9] noted that all the partial optic axes intersect at the
molecular center. Here the term centrosymmetric is not restricted to molecules
containing a center of inversion, and the improper reflection plane implied in the
Sn operation is counted as a symmetry element. For uniaxial molecules belonging
to the chiral point groups Cn or to the achiral point groups Cnv, the partial optic axis
for an excitation polarized along the symmetry axis will coincide with the axis,
while the partial optic axis for an excitation polarized perpendicular to the sym-
metry axis intersects the axis at a point determined by evaluation of Eq. (18). For
molecules belonging to the achiral point group Cs¼Ch having a single symmetry
plane, the partial optic axis for an excitation polarized in the molecular symmetry
plane will lie in the plane, whereas the partial optic axis for an excitation polarized
perpendicular to the symmetry plane will intersect the plane at a point determined
by evaluation of Eq. (18). In the cases where the partial optic axis intersects one or
more symmetry elements, the point of intersection, as determined by symmetry or
by Eq. (18), becomes a natural choice for a reference point, whereas coincidence of
the partial optic axis and a symmetry axis requires a choice of reference location on
the axis. Finally, specification of a reference point when the partial optic axis lies in
a symmetry plane requires solution of Eq. (18) and a choice of the parameter �.

In the context of optical rotatory power, we note that for chiral molecular sys-
tems, where the rotatory strength, the total rotatory strength tensor, and its multi-
polar components are non-vanishing for all electric dipole allowed excitations, the
use of reference points or coordinate origins based on the partial optic axis for a
particular excitation, ensures the numerically smallest value for the magnetic dipole
transition moment [9], and at the same time allows a physically meaningful repre-
sentation of the electric dipole – magnetic dipole and electric dipole – electric
quadrupole rotatory strength tensors for this excitation, if the argument advocated
towards the end of the preceeding subsection is accepted. For achiral optically active
molecular systems, the rotatory strength vanishes identically for all excitations, and
Eqs. (19) and (20) then imply that the above choices of reference points make the
magnetic dipole transition moments and the electric dipole – magnetic dipole rota-
tory strength tensor vanish identically for all electric dipole allowed excitations,
contrary to expectations based on standard character table selection rules [8], leav-
ing non-vanishing electric quadrupole transition moments and electric dipole –
electric quadrupole rotatory strength tensors for electric dipole allowed excitations,
in accord with character table selection rules. For molecular systems belonging to
one of the achiral optically inactive point groups, the rotatory strength and the total
rotatory strength tensor now vanish identically, and the above choices of reference
points ensure that the electric dipole – magnetic dipole and electric dipole – electric
quadrupole rotatory strength tensors also vanish identically for all excitations in
these systems. For the achiral optically inactive point groups Cnv (n� 3), C3h,
D3h, and Td, the selection rules in the character tables suggest non-zero elements
for the rotatory strength tensor, while the symmetrization of the tensors in Eqs. (2),
(5), and (6), cf. Eq. (13) of Ref. [5], ensures the vanishing of the resulting rotatory
strength tensor and its components also for these point groups, cf. Ref. [7].
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We note that the selection rules outlined in the above paragraph, conversely
speaking, imply that choices of reference points or equivalently molecular coordi-
nate origins not coinciding with a point on the partial optic axis for a given electric
dipole allowed excitation may lead to unphysical contributions to the magnetic
dipole and electric quadrupole transition moments for electric dipole allowed ex-
citations, and hence to unphysical, but mutually cancelling, contributions to the
electric dipole – magnetic dipole and electric dipole – electric quadrupole rotatory
strength tensors. Explicit examples of the unphysical electric dipole – magnetic
dipole and electric dipole – electric quadrupole rotatory strength tensors generated
by a reference choice not respecting molecular symmetry are given in Ref. [3].

Application to the Molecular Exciton Theory of Circular Dichroism

Summary of Molecular Exciton Intensity Quantities

In molecular exciton theory [5, 9, 11], the basic assumption is that the overall mole-
cular system consists of identical subunits or chromophores arranged in a regular
structure, and that the local chromophoric electric dipole transition moment (Eq. (24))
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is non-vanishing. In Eq. (24), R� is the position vector for a local reference point in
chromophore � [12], the reference points being assigned the same relative position
in all chromophores. �

P
j indicates summation over the electrons in this chromo-

phore. The corresponding local magnetic dipole and electric quadrupole transition
moments are given by Eqs. (25) and (26) expressed relative to the local reference
points, cf. Eqs. (12) and (13). The energetic interactions between the chromophoric
excitations are governed by the term shown by Eq. (27) representing the interaction
between the local transition densities ’�;1’�;o and ’�;1’�;o, most often expressed
as the electric dipole – electric dipole interaction in Eq. (32) of Ref. [5].
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The resulting absorption intensities are governed by the absorption strength cou-
pling tensor (Eq. (28)) and the CD intensities are governed by three coupling terms,
the electric dipole – electric dipole coupling tensor (Eq. (29)) the electric dipole –
magnetic dipole coupling tensor (Eq. (30)) and the electric dipole – electric quad-
rupole coupling tensor (Eq. (31)).
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The terms labelled inh account for contributions from inherent optical rotatory
power of the chromophores. In accord with the discussion in Ref. [5], the tensors
in Eqs. (28)–(31) are symmetric in the chromophore indices, but are not symmetric
in the Cartesian indices.

In Ref. [5], expressions are given for the partial absorption and CD intensities,
i.e. the intensities for the individual exciton excitations, and for the corresponding
total band intensities, obtained by summing over the partial intensities. The struc-
tural and chiral information extracted from the two sets of intensities is essentially
the same. Here we focus on the band intensities, and refer to Ref. [5] for details of
the derivations. For anisotropic absorption, the directional band intensity can be
written as shown by Eq. (32) where u is a unit vector in the direction of propagation
of a light beam of angular frequency !, No is the number of molecules per unit
volume, !1 is the angular resonance frequency for the chromophoric excitation
1 o, and �ð!� !1 � d�ðuÞ) is the nomalized line shape function for the chromo-
phoric excitation 1 o, shifted by the parameter d�ðuÞ. d�ðuÞ is a function of the
direction of the light beam relative to the molecule, and depends on interchromo-
phoric interactions and intensity couplings. This line shift parameter, and the corre-
sponding line shift parameters in the expressions for CD band intensities below, are
not central in the present context, see Ref. [5] for detailed expressions for these
quantities. The dipole strength tensor for excitation 1 o in chromophore � can be
expressed by Eq. (33) where D�;1;�;1 is the diagonal block of the absorption strength
coupling tensor, Eq. (28). The corresponding isotropic band intensity becomes Eq. (34)
where N is the number of chromophores, and D1¼D�,1¼ jð�; oj��

e
j�; 1Þj2 is the

dipole strength for the chromohoric excitation 1 o. The dipole strength D�,1 is
independent of chromophore index by the assumption of identical chromophoric
units, while the dipole strength tensors D�,1, Eq. (33), are identical for the individ-
ual chromophores except for the rotations following the relative orientation of the
chromophores in the overall structure of the exciton system.
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For anisotropic CD, the band intensity is divided into two contributions
(Eq. (35)) where the electric dipole – electric dipole contribution is given by Eq. (36)
expressed in terms of the coupling tensor in Eq. (29). �0ð!� !1� dipgD�ðuÞÞ is the
first derivative of the line shape function for the chromophoric excitation 1 o,
shifted by the parameter dipgD�ðuÞ, and the explicit expression for the correspond-
ing isotropic band intensity becomes Eq. (37).
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The contribution inhD�ðu; !Þ is given by Eq. (38) where R�;1 (Eq. (39)) is the
rotatory strength tensor for excitation 1 o in chromophore �, expressed in terms
of the diagonal block of the coupling tensors in Eqs. (30) and (31), and inhgD�ðuÞ
is the line shift parameter. The corresponding isotropic band intensity is then
given by Eq. (40).
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The isotropic part of the electric dipole – electric quadrupole coupling tensor, Eq.
(31), vanishes identically, cf. Eq. (10), and the rotatory strength for the chromo-
horic excitation 1 o, R1¼R�;1¼ Im½ð�; oj��

e
j�; 1Þ ? ð�; 1j��

m
j�; oÞ�, cf. Eq.

(10), is independent of chromophore index by the assumption of identical chro-
mophoric units, while the rotatory strength tensors R�;1, Eq. (39), are identical for
the individual chromophores except for the rotations following the relative orienta-
tion of the chromophores in the overall structure of the exciton system. We note
that Eq. (37) forms the basis for the exciton chirality method developed by Harada,
Nakanishi, and Berova [13–15].
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Application of the Partial Optic Axis

An immediate consequence of identifying the general chromophoric reference
point R�, introduced in Eq. (24), with a reference point a� on the partial optic axis
for excitation 1 o in chromophore �, chosen according to the discussion in the
preceeding section, is that Eqs. (19), (28), and (30) combine to yield Eq. (41) for
the electric dipole – magnetic dipole contribution to the inherent CD coupling
tensor, using POA to label intensity quantities evaluated relative to reference points
located on the partial optic axis for the excitations coupled in the tensor. R1 and D1

are the rotatory strength and dipole strength for the chromophoric 1 o excitation,
and D�;1;�;1 is the absorption strength coupling tensor, Eq. (28). The diagonal block
of Eq. (41) combines with Eqs. (33) and (39) to reproduce Eq. (20). The electric
dipole – electric quadrupole coupling tensor, Eq. (31), referenced to the respective
partial optic axis is shown by Eq. (42).

inhCðM;POAÞ�;1;�;1 ¼
2R1

!1D1

D�;1;�;1 ð41Þ

inhCðQ;POAÞ�;1;�;1 ¼ ð1=2Þm2!1
2fð�; oj�qeðaqÞj�; 1Þ�ð�; 1j��

e
j�; oÞ

þ ð�; oj�qeðaqÞj�; 1Þ3ð�; 1j��
e
j�; oÞg ð42Þ

The introduction of reference points located on the chromophoric partial optic axes
implies that the factors of (R� � R�) in the interaction term V�;1;�;1, Eq. (27), when
evaluated according to Eq. (32) of Ref. [5], are replaced by (a� � a�). The absorp-
tion band intensities in Eqs. (32) and (34) are unaffected by the choice of chro-
mophoric reference points, except for the evaluation of the line shift parameters, cf.
Eq. (61) of Ref. [5].

Following the discussion in the preceeding section, the essential function of the
choice of reference points anchored on the partial optic axes is to allow full advan-
tage of symmetry considerations for the individual chromophores coupled with a
systematic procedure for the determination of the reference points in cases where
symmetry does not suffice for the determination. For identical chromophores, the
determination of partial optic axis reference points requires analysis of a single,
representative chromophore. With these reference points at hand, the partial optic
axes evaluation of the electric dipole – electric dipole CD intensities in Eqs. (29),
(36), and (37) is mandatory for all chromophore structures, and for anisotropic as
well as isotropic intensities. For chiral chromophores all terms in Eqs. (38) and
(40) must also be evaluated. In this case perhaps the most important consequence
of a partial optic axis approach is the simplification offered by the use of Eq. (41)
for the electric dipole – magnetic dipole tensor, inhCðM; POAÞ�;1;�;1, in place of
the general expression in Eq. (30). For achiral optically active chromophores,
the chromophoric rotatory strength R1 and hence the electric dipole – magnetic
dipole tensor inhCðM;POAÞ�;1;�;1, Eq. (41), vanish identically, leaving the electric
dipole – electric quadrupole rotatory strength tensor R�,1(Q, POA), Eq. (39), and
the coupling tensor inhCðQ; POAÞ�;1;�;1, Eq. (42), as the only surviving contribu-
tions in the anisotropic intensities expressions in Eq. (38). For achiral optically
inactive chromophores, the chromophoric rotatory strength R1 and hence the elec-
tric dipole – magnetic dipole tensor inhCðM;POAÞ�;1;�;1, Eq. (41), as well as the
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electric dipole – electric quadrupole tensor inhCðQ;POAÞ�;1;�;1, Eq. (42), vanish
identically as a consequence of the selection rules discussed in the preceeding
section, making the electric dipole – electric dipole CD intensity in Eqs. (29),
(36), and (37) the only surviving intensity mechanism for anisotropic CD for these
chromophores. Electric dipole – electric quadrupole terms do not contribute to
isotropic CD, leaving Eq. (37) as the only surviving isotropic CD intensity mecha-
nism for all achiral chromophoric systems.

Discussion

A partial optic axis approach can hence lead to a significant reduction or simpli-
fication of the terms required for the evaluation of the chiroptical properties in a
molecular exciton context, and can provide a well defined multipolar interpretation
of the surviving contributions. By contrast, approaches based on general choices of
reference points require the evaluation of all terms in the intensity expressions. The
author is not aware of studies of exciton coupled chiral chromophores, but apol-
ogizes in advance for any oversights. On the other hand, in the reported exciton
studies, cf. Refs. [13, 16] and references therein, achiral optically active systems of
Cs¼Ch and C2v are quite common, alongside a wide selection of achiral optically
inactive chromophores; see also Refs. [22, 23]. All of these systems qualify for the
application of the analysis given in the above subsection, as can be illustrated for
achiral optically inactive chromophores by the interplay between electric dipole –
electric dipole band intensity in Eqs. (36) and (37) and the inherent band intensity
in Eqs. (38) and (40). For dimeric systems the line shift parameters in these inten-
sity expressions vanish identically [17], and the two sets of intensity terms there-
fore exhibit identical derivative line shapes, their relative signs and magnitudes
being governed by the chromophoric interaction and the optical coupling tensors.
These tensors are in turn governed by the choice of reference points, implying in
particular that parts or all of the inherent contributions represented by Eqs. (38) and
(40) can be neglected with impunity only for a partial optic axis based approach.
The importance of this point can be exemplified by the erroneous assignment of the
absolute configurations of molecular systems containing exciton coupled achiral
chromophores based on the dimeric version of the isotropic electric dipole – electric
dipole CD expression in Eq. (37) reported in Ref. [18]. The error was subsequent-
ly traced [19] to the neglect of the contributions from inherent electric dipole –
magnetic dipole terms in Eq. (40), which were required for the particular choice of
reference points used for the assignments. It should be added that Kirkwood’s
neglect of a term corresponding to Eq. (40) in his development of a polarizability
theory for optical rotation [12], was part of the motivation for Moffitt’s introduction
of the partial optic axis [9]; see also Ref. [20].

Concluding Remarks

The material in this communication focuses on the application of the concept of the
partial optic axis for analysis and selection of anisotropic chiroptical intensity
contributions for general molecular systems and for molecular exciton coupled
systems. For isotropic chiroptical properties of exciton coupled systems, experi-
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mental results and structural analyses abound, cf. Refs. [13–16] and references
therein, and the discussion of the results in Refs. [18, 19] in the preceeding sub-
section, illustrate the applicability of the present formalism in the context of iso-
tropic intensities. For anisotropic chiroptical properties of exciton coupled systems,
which would be the acid test of the applicability of the formalism, practical results
are quite sparse at present; see Refs. [21–23] and references therein. In a separate
publication [24], we report the first ab-initio calculations and molecular exciton
analyses of the anisotropic chiroptical spectra for exciton coupled molecular sys-
tems, in casu two dimeric molecular systems containing chromophores of C2v and
Cs¼Ch symmetry, respectively.
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